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We derive the boundary condition for the Dirac equation corresponding to a tight-binding model on a
two-dimensional honeycomb lattice terminated along an arbitrary direction. Zigzag boundary conditions result
generically once the boundary is not parallel to the bonds. Since a honeycomb strip with zigzag edges is
gapless, this implies that confinement by lattice termination does not, in general, produce an insulating
nanoribbon. We consider the opening of a gap in a graphene nanoribbon by a staggered potential at the edge
and derive the corresponding boundary condition for the Dirac equation. We analyze the edge states in a
nanoribbon for arbitrary boundary conditions and identify a class of propagating edge states that complement
the known localized edge states at a zigzag boundary.
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I. INTRODUCTION

The electronic properties of graphene can be described by
a difference equation �representing a tight-binding model on
a honeycomb lattice� or by a differential equation �the two-
dimensional Dirac equation�.1,2 The two descriptions are
equivalent at large length scales and low energies, provided
that the Dirac equation is supplemented by boundary condi-
tions consistent with the tight-binding model. These bound-
ary conditions depend on a variety of microscopic properties
determined by atomistic calculations.3

For a general theoretical description, it is useful to know
what boundary conditions on the Dirac equation are allowed
by the basic physical principles of current conservation and
�presence or absence of� time reversal symmetry—
independent of any specific microscopic input. This problem
was solved in Refs. 4 and 5. The general boundary condition
depends on one mixing angle � �which vanishes if the
boundary does not break the time reversal symmetry�, one
three-dimensional unit vector n perpendicular to the normal
to the boundary, and one three-dimensional unit vector � on
the Bloch sphere of valley isospins. Altogether, four real pa-
rameters fix the boundary condition.

In the present paper, we investigate how the boundary
condition depends on the crystallographic orientation of the
boundary. As the orientation is incremented by 30°, the
boundary configuration switches from armchair �parallel to
one-third of the carbon-carbon bonds� to zigzag �perpendicu-
lar to another one-third of the bonds�. The boundary condi-
tions for the armchair and zigzag orientations are known.6

Here, we show that the boundary condition for intermediate
orientations remains of the zigzag form, so that the armchair
boundary condition is only reached for a discrete set of ori-
entations.

Since the zigzag boundary condition does not open up a
gap in the excitation spectrum,6 the implication of our result
�not noticed in earlier studies7� is that a terminated honey-
comb lattice of arbitrary orientation is metallic rather than
insulating. We present tight-binding model calculations to
show that, indeed, the gap ��exp�−f���W /a� in a nanorib-
bon at crystallographic orientation � vanishes exponentially
when its width W becomes large compared to the lattice

constant a, characteristic of metallic behavior. The ��1 /W
dependence characteristic of insulating behavior requires the
special armchair orientation �� a multiple of 60°�, at which
the decay rate f��� vanishes.

Confinement by a mass term in the Dirac equation does
produce an excitation gap regardless of the orientation of the
boundary. We show how the infinite-mass boundary condi-
tion of Ref. 8 can be approached starting from the zigzag
boundary condition, by introducing a local potential differ-
ence on the two sublattices in the tight-binding model. Such
a staggered potential follows from atomistic calculations3

and may well be the origin of the insulating behavior ob-
served experimentally in graphene nanoribbons.9,10

The outline of this paper is as follows. In Sec. II, we
formulate, following Refs. 4 and 5, the general boundary
condition of the Dirac equation on which our analysis is
based. In Sec. III, we derive from the tight-binding model the
boundary condition corresponding to an arbitrary direction of
lattice termination. In Sec. IV, we analyze the effect of a
staggered boundary potential on the boundary condition. In
Sec. V, we calculate the dispersion relation for a graphene
nanoribbon with arbitrary boundary conditions. We identify
dispersive �propagating� edge states which generalize the
known dispersionless �localized� edge states at a zigzag
boundary.11 The exponential dependence of the gap � on the
nanoribbon width is calculated in Sec. VI both analytically
and numerically. We conclude in Sec. VII.

II. GENERAL BOUNDARY CONDITION

The long-wavelength and low-energy electronic excita-
tions in graphene are described by the Dirac equation

H� = �� , �2.1�

with Hamiltonian

H = v�0 � �� · p� , �2.2�

acting on a four-component spinor wave function �. Here, v
is the Fermi velocity and p=−i	� is the momentum operator.
Matrices �i ,
i are Pauli matrices in valley space and sublat-
tice space, respectively �with unit matrices �0 ,
0�. The cur-
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rent operator in the direction n is n ·J=v�0 � �� ·n�.
The Hamiltonian H is written in the valley isotropic rep-

resentation of Ref. 5. The alternative representation H�
=v�z � �� ·p� of Ref. 4 is obtained by the unitary transforma-
tion

H� = UHU†, U = 1
2 ��0 + �z� � 
0 + 1

2 ��0 − �z� � 
z.

�2.3�

As described in Ref. 4, the general energy-independent
boundary condition has the form of a local linear restriction
on the components of the spinor wave function at the bound-
ary,

� = M� . �2.4�

The 4�4 matrix M has eigenvalue 1 in a two-dimensional
subspace containing �, and without loss of generality, we
may assume that M has eigenvalue −1 in the orthogonal
two-dimensional subspace. This means that M may be cho-
sen as a Hermitian and unitary matrix,

M = M†, M2 = 1. �2.5�

The requirement of the absence of current normal to the
boundary,

���nB · J��� = 0, �2.6�

with nB a unit vector normal to the boundary and pointing
outward, is equivalent to the requirement of anticommutation
of the matrix M with the current operator,

�M,nB · J	 = 0. �2.7�

That Eq. �2.7� implies Eq. �2.6� follows from ���nB ·J���
= ���M�nB ·J�M���=−���nB ·J���. The converse is proven
in Appendix A.

We are now faced with the problem of determining the
most general 4�4 matrix M that satisfies Eqs. �2.5� and
�2.7�. Reference 4 obtained two families of two-parameter
solutions and two more families of three-parameter solu-
tions. These solutions are subsets of the single four-
parameter family of solutions obtained in Ref. 5,

M = sin ��0 � �n1 · �� + cos ��� · �� � �n2 · �� , �2.8�

where � ,n1 ,n2 are three-dimensional unit vectors, such that
n1 and n2 are mutually orthogonal and also orthogonal to nB.
A proof that Eq. �2.8� is indeed the most general solution is
given in Appendix A. One can also check that the solutions
of Ref. 4 are subsets of M�=UMU†.

In this work, we will restrict ourselves to boundary con-
ditions that do not break the time reversal symmetry. The
time reversal operator in the valley isotropic representation is

T = − ��y � 
y�C , �2.9�

with C the operator of complex conjugation. The boundary
condition preserves the time reversal symmetry if M com-
mutes with T. This implies that the mixing angle �=0, so
that M is restricted to a three-parameter family,

M = �� · �� � �n · ��, n � nB. �2.10�

III. LATTICE TERMINATION BOUNDARY

The honeycomb lattice of a carbon monolayer is a trian-
gular lattice �lattice constant a� with two atoms per unit cell,
referred to as A and B atoms �see Fig. 1�a��. The A and B
atoms separately form two triangular sublattices. The A at-
oms are connected only to B atoms and vice versa. The tight-
binding equations on the honeycomb lattice are given by

��A�r� = t��B�r� + �B�r − R1� + �B�r − R2�� ,

��B�r� = t��A�r� + �A�r + R1� + �A�r + R2�� . �3.1�

Here, t is the hopping energy, �A�r� and �B�r� are the elec-
tron wave functions on A and B atoms belonging to the same
unit cell at a discrete coordinate r, while R1= �a
3 /2,
−a /2�, R2= �a
3 /2,a /2� are lattice vectors, as shown in Fig.
1�a�.

Regardless of how the lattice is terminated, Eq. �3.1� has
the electron-hole symmetry �B→−�B, �→−�. For the long-
wavelength Dirac Hamiltonian �Eq. �2.2��, this symmetry is
translated into the anticommutation relation

H
z � �z + 
z � �zH = 0. �3.2�

Electron-hole symmetry further restricts the boundary matrix
M in Eq. �2.10� to two classes: zigzaglike ��= 
 ẑ, n= ẑ� and
armchairlike ��z=nz=0�. In this section, we will show that
the zigzaglike boundary condition applies generically to an
arbitrary orientation of the lattice termination. The armchair-
like boundary condition is only reached for special orienta-
tions.

A. Characterization of the boundary

A terminated honeycomb lattice consists of sites with
three neighbors in the interior and sites with only one or two
neighbors at the boundary. The absent neighboring sites are
indicated by open circles in Fig. 1 and the dangling bonds by
thin line segments. The tight-binding model demands that the

FIG. 1. �a� Honeycomb lattice constructed from a unit cell �gray
rhombus� containing two atoms �labeled A and B�, translated over
lattice vectors R1 and R2. Panels �b�–�d� show three different peri-
odic boundaries with the same period T=nR1+mR2. Atoms on the
boundary �connected by thick solid lines� have dangling bonds �thin
dotted line segments� to empty neighboring sites �open circles�. The
number N of missing sites and N� of dangling bonds per period is
�n+m. Panel �d� shows a minimal boundary, for which N=N�=n
+m.
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wave function vanishes on the set of absent sites, so the first
step in our analysis is the characterization of this set. We
assume that the absent sites form a one-dimensional super-
lattice, consisting of a supercell of N empty sites, translated
over multiples of a superlattice vector T. Since the boundary
superlattice is part of the honeycomb lattice, we may write
T=nR1+mR2 with n and m non-negative integers. For ex-
ample, in Fig. 1, we have n=1, m=4. Without loss of gen-
erality, and for later convenience, we may assume that m
−n=0 �mod 3�.

The angle � between T and the armchair orientation �the
x axis in Fig. 1� is given by

� = arctan� 1

3

n − m

n + m
�, −

�

6
� � �

�

6
. �3.3�

The armchair orientation corresponds to �=0, while �
= 
� /6 corresponds to the zigzag orientation. �Because of
the � /3 periodicity, we only need to consider ����� /6.�

The number N of empty sites per period T can be arbi-
trarily large, but it cannot be smaller than n+m. Likewise,
the number N� of dangling bonds per period cannot be
smaller than n+m. We call the boundary minimal if N=N�
=n+m. For example, the boundary in Fig. 1�d� is minimal
�N=N�=5�, while the boundaries in Figs. 1�b� and 1�c� are
not minimal �N=7, N�=9, and N=5, N�=7, respectively�. In
what follows, we will restrict our considerations to minimal
boundaries, both for reasons of analytical simplicity12 and
for physical reasons �it is natural to expect that the minimal
boundary is energetically most favorable for a given orienta-
tion�.

We conclude this subsection with a property of minimal
boundaries that we will need later on. The N empty sites per
period can be divided into NA empty sites on sublattice A and
NB empty sites on sublattice B. A minimal boundary is con-
structed from n translations over R1, each contributing one
empty A site, and m translations over R2, each contributing
one empty B site. Hence, NA=n and NB=m for a minimal
boundary.

B. Boundary modes

The boundary breaks the two-dimensional translational
invariance over R1 and R2, but a one-dimensional transla-
tional invariance over T=nR1+mR2 remains. The quasimo-
mentum p along the boundary is therefore a good quantum
number. The corresponding Bloch state satisfies

��r + T� = exp�ik���r� , �3.4�

with 	k=p ·T. While the continuous quantum number k
� �0,2�� describes the propagation along the boundary, a
second �discrete� quantum number � describes how these
boundary modes decay away from the boundary. We select �
by demanding that the Bloch wave �Eq. �3.4�� is also a so-
lution of

��r + R3� = ���r� . �3.5�

The lattice vector R3=R1−R2 has a nonzero component
a cos ��a
3 /2 perpendicular to T. We need ����1 to pre-

vent ��r� from diverging in the interior of the lattice. The
decay length ldecay in the direction perpendicular to T is
given by

ldecay =
− a cos �

ln���
. �3.6�

The boundary modes satisfying Eqs. �3.4� and �3.5� are
calculated in Appendix B from the tight-binding model. In
the low-energy regime of interest �energies � small compared
to t�, there is an independent set of modes on each sublattice.
On sublattice A, the quantum numbers � and k are related by

�− 1 − ��m+n = exp�ik��n, �3.7a�

and on sublattice B, they are related by

�− 1 − ��m+n = exp�ik��m. �3.7b�

For a given k, there are NA roots �p of Eq. �3.7a� having
absolute value �1, with corresponding boundary modes �p.
We sort these modes according to their decay lengths from
short to long, ldecay��p�� ldecay��p+1� or ��p�� ��p+1�. The
wave function on sublattice A is a superposition of these
modes,

��A� = 

p=1

NA

�p�p, �3.8�

with coefficients �p such that ��A� vanishes on the NA miss-
ing A sites. Similarly, there are NB roots �p� of Eq. �3.7b�
with ��p���1, ��p��� ��p+1� �. The corresponding boundary
modes form the wave function on sublattice B,

��B� = 

p=1

NB

�p��p� , �3.9�

with �p� such that ��B� vanishes on the NB missing B sites.

C. Derivation of the boundary condition

To derive the boundary condition for the Dirac equation,
it is sufficient to consider the boundary modes in the k→0
limit. The characteristic equations �Eqs. �3.7a� and �3.7b��
for k=0 each have a pair of solutions �
=exp�
2i� /3� that
do not depend on n and m. Since ��
�=1, these modes do not
decay as one moves away from the boundary. The corre-
sponding eigenstate exp�
iK ·r� is a plane wave with wave
vector K= �4 /3��R3 /a2. One readily checks that this Bloch
state also satisfies Eq. �3.4� with k=0 �since K ·T=2��n
−m� /3=0 �mod 2���.

The wave functions �Eqs. �3.8� and �3.9�� on sublattices A
and B in the limit k→0 take the form

��A� = �1eiK·r + �4e−iK·r + 

p=1

NA−2

�p�p, �3.10a�

��B� = �2eiK·r + �3e−iK·r + 

p=1

NB−2

�p��p� . �3.10b�

The four amplitudes ��1 ,−i�2 , i�3 ,−�4��� form the
four-component spinor � in the Dirac equation �Eq. �2.1��.
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The remaining NA−2 and NB−2 terms describe decaying
boundary modes of the tight-binding model that are not in-
cluded in the Dirac equation.

We are now ready to determine what restriction on � is
imposed by the boundary condition on ��A� and ��B�. This
restriction is the required boundary condition for the Dirac
equation. In Appendix B, we calculate that, for k=0,

NA = n − �n − m�/3 + 1, �3.11�

NB = m − �m − n�/3 + 1, �3.12�

so that NA+NB=n+m+2 is the total number of unknown
amplitudes in Eqs. �3.8� and �3.9�. These have to be chosen
such that ��A� and ��B� vanish on NA and NB lattice sites,
respectively. For the minimal boundary under consideration,
we have NA=n equations to determine NA unknowns and
NB=m equations to determine NB unknowns.

Three cases can be distinguished �in each case, n−m=0
�mod 3��.

�1� If n�m, then NA�n and NB�m+2, so �1=�4=0,
while �2 and �3 are undetermined.

�2� If n�m, then NB�n and NA�m+2, so �2=�3=0,
while �1 and �4 are undetermined.

�3� If n=m, then NA=n+1 and NB=m+1, so ��1�= ��4�
and ��2�= ��3�.

In each case, the boundary condition is of the canonical
form �= �� ·�� � �n ·��� with the following.

�1� �=−ẑ, n= ẑ if n�m �zigzag-type boundary condition�.
�2� �= ẑ, n= ẑ if n�m �zigzag-type boundary condition�.
�3� � · ẑ=0, n · ẑ=0 if n=m �armchair-type boundary con-

dition�.
We conclude that the boundary condition is of zigzag type

for any orientation T of the boundary, unless T is parallel to
the bonds �so that n=m and �=0 �mod � /3��.

D. Precision of the boundary condition

At a perfect zigzag or armchair edge, the four components
of the Dirac spinor � are sufficient to meet the boundary
condition. Near the boundaries with larger period and more
complicated structure, the wave function �Eq. �3.10�� also
necessarily contains several boundary modes �p ,�p� that de-
cay away from the boundary. The decay length � of the slow-
est decaying mode is the distance at which the boundary is
indistinguishable from a perfect armchair or zigzag edge. At
distances smaller than �, the boundary condition breaks
down.

In the case of an armchairlike boundary �with n=m�, all
the coefficients �p and �p� in Eqs. �3.10a� and �3.10b� must
be nonzero to satisfy the boundary condition. The maximal
decay length � is then equal to the decay length of the
boundary mode �n−1 which has the largest ���. It can be
estimated from the characteristic equations �Eqs. �3.7a� and
�3.7b�� that ���T�. Hence, the larger the period of an arm-
chairlike boundary, the larger the distance from the boundary
at which the boundary condition breaks down.

For the zigzaglike boundary, the situation is different. On
one sublattice, there are more boundary modes than condi-
tions imposed by the presence of the boundary, and on the

other sublattice, there are less boundary modes than condi-
tions. Let us assume that sublattice A has more modes than
conditions �which happens if n�m�. The quickest decaying
set of boundary modes sufficient to satisfy the tight-binding
boundary condition contains n modes �p with p�n. The
distance � from the boundary within which the boundary
condition breaks down is then equal to the decay length of
the slowest decaying mode �n in this set and is given by

� = ldecay��n� = − a cos �/ln��n� �3.13�

�see Eq. �3.6��.
As derived in Appendix B for the case of large periods

�T��a, the quantum number �n satisfies the following sys-
tem of equations:

�1 + �n�m+n = ��n�n, �3.14a�

arg�1 + �n� −
n

n + m
arg�− �n� =

n

n + m
� . �3.14b�

The solution �n of this equation and hence the decay length �
do not depend on the length �T� of the period but only on the
ratio n / �n+m�= �1−
3tan �� /2, which is a function of the
angle � between T and the armchair orientation �see Eq.
�3.3��. In the case n�m when sublattice B has more modes
than conditions, the largest decay length � follows upon in-
terchanging n and m.

As seen from Fig. 2, the resulting distance � within which
the zigzag-type boundary condition breaks down is zero for
the zigzag orientation ��=� /6� and tends to infinity as the
orientation of the boundary approaches the armchair orienta-
tion ��=0�. �For finite periods, the divergence is cut off at
���T��a.� The increase of � near the armchair orientation
is rather slow. For ��0.1, the zigzag-type boundary condi-
tion remains precise on the scale of a few unit cells away
from the boundary.

FIG. 2. Dependence on the orientation � of the distance � from
the boundary within which the zigzag-type boundary condition
breaks down. The curve is calculated from formula �3.14� valid in
the limit �T��a of large periods. The boundary condition becomes
precise upon approaching the zigzag orientation �=� /6.
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Although the presented derivation is only valid for peri-
odic boundaries and low energies, such that the wavelength
is much larger than the length �T� of the boundary period, we
argue that these conditions may be relaxed. Indeed, since the
boundary condition is local, it cannot depend on the structure
of the boundary far away; hence, the periodicity of the
boundary cannot influences the boundary condition. It cannot
also depend on the wavelength once the wavelength is larger
than the typical size of a boundary feature �rather than the
length of the period�. Since for most boundaries both � and
the scale of the boundary roughness are of the order of sev-
eral unit cells, we conclude that the zigzag boundary condi-
tion is, in general, a good approximation.

E. Density of edge states near a zigzaglike boundary

A zigzag boundary is known to support a band of disper-
sionless states,11 which are localized within several unit cells
near the boundary. We calculate the one-dimensional density
of these edge states near an arbitrary zigzaglike boundary.
Again, assuming that the sublattice A has more boundary
modes than conditions �n�m�, for each k, there are NA�k�
−NA linearly independent states �Eq. �3.8��, satisfying the
boundary condition. For k�0, the number of boundary
modes is equal to NA=n− �m−n� /3, so that for each k, there
are

Nstates = NA�k� − n = �m − n�/3 �3.15�

edge states. The number of the edge states for the case when
n�m again follows upon interchanging n and m. The density
� of edge states per unit length is given by

� =
Nstates

�T�
=

�m − n�

3a
n2 + nm + m2
=

2

3a
�sin �� . �3.16�

The density of edge states is maximal �=1 /3a for a perfect
zigzag edge and it decreases continuously when the bound-
ary orientation � approaches the armchair one. Equation
�3.16� explains the numerical data of Ref. 11, providing an
analytical formula for the density of edge states.

IV. STAGGERED BOUNDARY POTENTIAL

The electron-hole symmetry �Eq. �3.2��, which restricts
the boundary condition to being either of zigzag type or of
armchair type, is broken by an electrostatic potential. Here,
we consider, motivated by Ref. 3, the effect of a staggered
potential at the zigzag boundary. We show that the effect of
this potential is to change the boundary condition in a con-
tinuous way from �= 
�z � 
z� to �= 
�z � �� · �ẑ
�nB���. The first boundary condition is of zigzag type,
while the second boundary condition is produced by an infi-
nitely large mass term at the boundary.8

The staggered potential consists of a potential VA= +�,
VB=−� on the A sites and B sites in a total of 2N rows
closest to the zigzag edge parallel to the y axis �see Fig. 3�.
Since this potential does not mix the valleys, the boundary
condition near a zigzag edge with a staggered potential has
the form

� = − �z � �
z cos � + 
y sin ��� , �4.1�

in accord with the general boundary condition �Eq. �2.10��.
For �=0,� we have the zigzag boundary condition, and for
�= 
� /2, we have the infinite-mass boundary condition.

To calculate the angle �, we substitute Eq. �3.10� into the
tight-binding equation �Eq. �3.1�� �including the staggered
potential at the left-hand side� and search for a solution in the
limit �=0. The boundary condition is precise for the zigzag
orientation, so we may set �p=�p�=0. It is sufficient to con-
sider a single valley, so we also set �3=�4=0. The remain-
ing nonzero components are �1eiK·r��A�i�eiKy and �2eiK·r

��B�i�eiKy, where i in the argument of �A,B numbers the unit
cell away from the edge and we have used that K points in
the y direction. The resulting difference equations are

− ��A�i� = t��B�i� − �B�i − 1��, i = 1,2, . . . ,N ,

�4.2a�

��B�i� = t��A�i� − �A�i + 1��, i = 0,1,2, . . . ,N − 1,

�4.2b�

�A�0� = 0. �4.2c�

For the �1 ,�2 components of the Dirac spinor �, the
boundary condition �Eq. �4.1�� is equivalent to

�A�N�/�B�N� = − tan��/2� . �4.3�

Substituting the solution of Eq. �4.2� into Eq. �4.3� gives

cos � =
1 + sinh���sinh�� + 2N�/t�

cosh���cosh�� + 2N�/t�
, �4.4�

with sinh �=� /2t. Equation �4.4� is exact for N�1 but it is
accurate within 2% for any N. The dependence of the param-
eter � of the boundary condition on the staggered potential
strength � is shown in Fig. 4 for various values of N. The
boundary condition is closest to the infinite mass for � / t
�1 /N, while the regimes � / t�1 /N or � / t�1 correspond
to a zigzag boundary condition.

V. DISPERSION RELATION OF A NANORIBBON

A graphene nanoribbon is a carbon monolayer confined to
a long and narrow strip. The energy spectrum �n�k� of the nth

FIG. 3. Zigzag boundary with V= +� on the A sites �filled dots�
and V=−� on the B sites �empty dots�. The staggered potential
extends over 2N rows of atoms nearest to the zigzag edge. The
integer i counts the number of unit cells away from the edge.
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transverse mode is a function of the wave number k along the
strip. This dispersion relation is nonlinear because of the
confinement, which also may open up a gap in the spectrum
around zero energy. We calculate the dependence of the dis-
persion relation on the boundary conditions at the two edges
x=0 and x=W of the nanoribbon �taken along the y axis�.

In this section, we consider the most general boundary
condition �Eq. �2.10��, constrained only by time reversal
symmetry. We do not require that the boundary is purely a
termination of the lattice but allow for arbitrary local electric
fields and strained bonds. The conclusion of Sec. III that the
boundary condition is either zigzaglike or armchairlike does
not apply therefore to the analysis given in this section.

The general solution of the Dirac equation �Eq. �2.1�� in
the nanoribbon has the form ��x ,y�=�n,k�x�eiky. We impose
the general boundary condition �Eq. �2.10��,

��0,y� = ��1 · �� � �n1 · ����0,y� , �5.1a�

��W,y� = ��2 · �� � �n2 · ����W,y� , �5.1b�

with three-dimensional unit vectors �i, ni, restricted by
ni · x̂=0 �i=1,2�. �There is no restriction on �i.� Valley isot-
ropy of the Dirac Hamiltonian �Eq. �2.2�� implies that the
spectrum does not depend on �1 and �2 separately but only
on the angle � between them. The spectrum depends, there-
fore, on three parameters: the angle � and the angles �1, �2
between the z axis and the vectors n1, n2.

The Dirac equation H�=�� has two plane wave solu-
tions ��exp�iky+ iqx� for a given � and k, corresponding to
the two �real or imaginary� transverse wave numbers q that
solve �	v�2�k2+q2�=�2. Each of these two plane waves has a
twofold valley degeneracy, so there are four independent so-
lutions in total. Since the wave function in a ribbon is a
linear combination of these four waves and since each of
Eqs. �5.1a� and �5.1b� has a two-dimensional kernel, these
equations provide four linearly independent equations to de-

termine four unknowns. The condition that Eqs. �5.1a� and
�5.1b� have nonzero solutions gives an implicit equation for
the dispersion relation of the nanoribbon,

cos �1 cos �2�cos � − cos2  � + cos � sin �1 sin �2 sin2  

− sin  �sin  cos � + sin � sin��1 − �2�� = 0, �5.2�

where �2=4W2��� /	v�2−k2� and cos  =	vk /�.
For �1=�2=0 and �=�, Eq. �5.2� reproduces the tran-

scendental equation of Ref. 6 for the dispersion relation of a
zigzag ribbon. In the case �1=�2=� /2 of an armchairlike
nanoribbon, Eq. �5.2� simplifies to

cos � = cos � . �5.3�

This is the only case when the transverse wave function
�n,k�x� is independent of the longitudinal wave number k. In
Fig. 5, we plot the dispersion relations for several different
boundary conditions.

The low-energy modes of a nanoribbon with �� � �	v �k�
�see panels �a�–�d� of Fig. 5� have an imaginary transverse
momentum since q2= �� /	v�2−k2�0. If �q� becomes larger
than the ribbon width W, the corresponding wave function
becomes localized at the edges of the nanoribbon and decays
in the bulk. The dispersion relation �Eq. �5.2�� for such an
edge state simplifies to �=	v �k �sin �1 for the state localized
near x=0 and �=−	v �k �sin �2 for the state localized near x
=W. These dispersive edge states with velocity v sin � gen-
eralize the known11 dispersionless edge states at a zigzag
boundary �with sin �=0�.

Inspection of the dispersion relation �Eq. �5.2�� gives the
following condition for the presence of a gap in the spectrum
of the Dirac equation with arbitrary boundary condition: ei-
ther the valleys should be mixed ���0,�� or the edge states
at opposite boundaries should have energies of opposite sign
�sin �1 sin �2�0 for �=� or sin �1 sin �2�0 for �=0�.

As an example, we calculate the band gap for the stag-
gered potential boundary condition of Sec. IV. We assume
that the opposite zigzag edges have the same staggered po-
tential, so that the boundary condition is

��0,y� = + �z � �
z cos � + 
y sin ����0,y� , �5.4a�

��W,y� = − �z � �
z cos � + 
y sin ����W,y� .

�5.4b�

The dependence of � on the parameters �, N of the staggered
potential is given by Eq. �4.4�. This boundary condition cor-
responds to �=�, �1=�2=�, so that it has a gap for any
nonzero �. As shown in Fig. 6, ���� increases monotonically
with � from the zigzag limit ��0�=0 to the infinite-mass
limit ��� /2�=�	v /W.

VI. BAND GAP OF A TERMINATED HONEYCOMB
LATTICE

In this section, we return to the case of a boundary formed
purely by termination of the lattice. A nanoribbon with zig-
zag boundary condition has zero band gap according to the
Dirac equation �Fig. 5�a��. According to the tight-binding

FIG. 4. Plot of the parameter � in the boundary condition �Eq.
�4.1�� at a zigzag edge with the staggered potential of Fig. 3. The
curves are calculated from Eq. �4.4�. The values �=0 and �=� /2
correspond, respectively, to the zigzag and infinite-mass boundary
conditions.
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equations, there is a nonzero gap �, which, however, van-
ishes exponentially with increasing width W of the nanorib-
bon. We estimate the decay rate of ��W� as follows.

The low-energy states in a zigzag-type nanoribbon are the
hybridized zero energy edge states at the opposite bound-
aries. The energy � of such states may be estimated from the
overlap between the edge states localized at the opposite
edges, �= 
 �	v /W�exp�−W / ldecay�. In a perfect zigzag rib-
bon, there are edge states with ldecay=0 �and �=0�, so that
there is no band gap. For a ribbon with a more complicated
edge shape, the decay length of an edge state is limited by �,
the length within which the boundary condition breaks down
�see Sec. III D�. This length scale provides the analytical
estimate of the band gap in a zigzaglike ribbon,

� �
	v
W

e−W/�, �6.1�

with � given by Eqs. �3.13� and �3.14�.
The band gap of an armchairlike ribbon is

� = �	v/W�arccos�cos �� �6.2�

�see Eq. �5.3� and panels �e� and �f� of Fig. 5�. Adding an-
other row of atoms increases the nanoribbon width by one-
half of a unit cell and increases � by K ·R3=4� /3, so the
product �W in such a ribbon is an oscillatory function of W
with a period of 1.5 unit cells.

To test these analytical estimates, we have calculated
��W� numerically for various orientations and configurations
of boundaries. As seen from Fig. 7, in ribbons with a
nonarmchair boundary, the gap decays exponentially
�exp�−f���W /a� as a function of W. Nanoribbons with the
same orientation � but different period �T� have the same
decay rate f . As seen in Fig. 8, the decay rate obtained nu-
merically agrees well with the analytical estimate f =a /� fol-
lowing from Eq. �6.1� �with � given as a function of � in Fig.
2�. The numerical results of Fig. 7 are consistent with earlier
studies of the orientation dependence of the band gap in

FIG. 5. Dispersion relation of nanoribbons with different bound-
ary conditions. The large-wave number asymptotes ���=	v�k� of
bulk states are shown by dashed lines. Modes that do not approach
these asymptotes are edge states with dispersion ���=	v�k sin �i�.
The zigzag ribbon with �=� and �1=�2=0 �a� exhibits dispersion-
less edge states at zero energy �Ref. 11�. If �1 or �2 are nonzero, ��b�
and �c�� the edge states acquire linear dispersion, and if
sin �1 sin �2�0, �c� a band gap opens. If � is unequal to 0 or � �d�,
the valleys are mixed which makes all the level crossings avoided
and opens a band gap. ��e� and �f�� Armchairlike ribbons with �1

=�2=� /2 are the only ribbons having no edge states.

θ

∆
[h̄

v
/W

]

π/2π/4
0
0

1

3

2

FIG. 6. Dependence of the band gap � on the parameter � in the
staggered potential boundary condition �Eq. �5.4��.

FIG. 7. Dependence of the band gap � of zigzaglike nanorib-
bons on the width W. The curves in the left panel are calculated
numerically from the tight-binding equations. The right panel shows
the structure of the boundary, repeated periodically along both
edges.
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nanoribbons,7 but the exponential decrease of the gap for
nonarmchair ribbons was not noticed in those studies.

For completeness, we show in Fig. 9 our numerical results
for the band gap in an armchairlike nanoribbon ��=0�. We
see that the gap oscillates with a period of 1.5 unit cells, in
agreement with Eq. �6.2�.

VII. CONCLUSION

In summary, we have demonstrated that the zigzag-type
boundary condition �= 
�z � 
z� applies generically to a
terminated honeycomb lattice. The boundary condition
switches from the plus sign to the minus sign at the armchair
orientation �=0 �mod � /3�, when the boundary is parallel to
1 /3 of all the carbon-carbon bonds �see Fig. 10�.

The distance � from the edge within which the boundary
condition breaks down is minimal �=0� at the zigzag orien-

tation �=� /6 �mod � /3� and maximal at the armchair ori-
entation. This is the length scale that governs the band gap
���	v /W�exp�−W /�� in a nanoribbon of width W. We
have tested our analytical results for � with the numerical
solution of the tight-binding equations and find good agree-
ment.

While the lattice termination by itself can only produce
zigzag- or armchair-type boundary conditions, other types of
boundary conditions can be reached by breaking the
electron-hole symmetry of the tight-binding equations. We
have considered the effect of a staggered potential at a zigzag
boundary �produced, for example, by edge magnetization3�
and have calculated the corresponding boundary condition. It
interpolates smoothly between the zigzag and infinite-mass
boundary conditions, opening up a gap in the spectrum that
depends on the strength and range of the staggered potential.

We have calculated the dispersion relation for arbitrary
boundary conditions and found that the edge states which are
dispersionless at a zigzag edge acquire a dispersion for more
general boundary conditions. Such propagating edge states
exist, for example, near a zigzag edge with staggered poten-
tial.

Our discovery that the zigzag boundary condition is ge-
neric explains the findings of several computer
simulations11,13,14 in which the behavior characteristic of a
zigzag edge was observed at nonzigzag orientations. It also
implies that the mechanism of gap opening at a zigzag edge
of Ref. 3 �production of a staggered potential by magnetiza-
tion� applies generically to any ��0. This may explain why
the band gap measurements of Ref. 10 produced results that
did not depend on the crystallographic orientation of the na-
noribbon.
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APPENDIX A: DERIVATION OF THE GENERAL
BOUNDARY CONDITION [EQ. (2.8)]

We first show that the anticommutation relation �Eq.
�2.7�� follows from the current conservation requirement

ϕ

f
(ϕ

)

π/60

1

2

FIG. 8. Dependence of the gap decay rate on the orientation � of
the boundary �defined in the inset of Fig. 2�. The dots are the fits to
numerical results of the tight-binding equations; the solid curve is
the analytical estimate �Eq. �6.1��.

FIG. 9. Dependence of the band gap � on the width W for an
armchair ribbon �dashed line� and for a ribbon with a boundary of
the same orientation but with a larger period �solid line�. The curves
are calculated numerically from the tight-binding equations.

FIG. 10. These two graphene flakes �or quantum dots� both have
the same zigzag-type boundary condition: �= 
�z � 
z�. The sign
switches between ! and � when the tangent to the boundary has an
angle with the x axis which is a multiple of 60°.
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�Eq. �2.6��. The current operator in the basis of eigenvectors
of M has the block form

nB · J = � X Y

Y† Z
�, M = �1 0

0 − 1
� . �A1�

The Hermitian sub-block X acts in the two-dimensional sub-
space of eigenvectors of M with eigenvalue 1. To ensure that
���nB ·J���=0 for any � in this subspace, it is necessary
and sufficient that X=0. The identity �nB ·J�2=1 is equivalent
to YY†=1 and Z=0; hence, �M ,nB ·J	=0.

We now show that the most general 4�4 matrix M that
satisfies Eqs. �2.5� and �2.7� has the four-parameter form
�Eq. �2.8��. Using only the Hermiticity of M, we have the
16-parameter representation

M = 

i,j=0

3

��i � 
 j�cij , �A2�

with real coefficients cij. Anticommutation with the current
operator brings this down to the eight-parameter form

M = 

i=0

3

�i � �ni · �� , �A3�

where the ni’s are three-dimensional vectors orthogonal to
nB. The absence of off-diagonal terms in M2 requires that the
vectors n1 ,n2 ,n3 are multiples of a unit vector ñ which is
orthogonal to n0. The matrix M may now be rewritten as

M = �0 � �n0 · �� + ��̃ · �� � �ñ · �� . �A4�

The equality M2=1 further demands n0
2+ �̃2=1, leading to

the four-parameter representation �Eq. �2.8�� after redefini-
tion of the vectors.

APPENDIX B: DERIVATION OF THE BOUNDARY MODES

We derive the characteristic equation �Eqs. �3.7a� and
�3.7b�� from the tight-binding equation �Eq. �3.1�� and the
definitions of the boundary modes �Eqs. �3.4� and �3.5��. In
the low-energy limit � / t"a / �T�, we may set �→0 in Eq.
�3.1�, so it splits into two decoupled sets of equations for the
wave function on sublattices A and B,

�B�r� + �B�r − R1� + �B�r − R2� = 0, �B1a�

�A�r� + �A�r + R1� + �A�r + R2� = 0. �B1b�

Substituting R1 by R2+R3 in these equations and using the
definition �Eq. �3.5�� of �, we express ��r+R2� through ��r�,

�B�r + R2� = − �1 + ��−1�B�r� , �B2a�

�A�r + R2� = − �1 + ���A�r� . �B2b�

Equations �3.5� and �B2� together allow to find the boundary
mode with a given value of � on the whole lattice,

�B�r + pR2 + qR3� = �q�− 1 − ��−p�B�r� , �B3a�

�A�r + pR2 + qR3� = �q�− 1 − ��p�A�r� , �B3b�

with p and q arbitrary integers. Substituting ��r+T� into Eq.
�3.4� from Eq. �B3� and using T= �n+m�R2+nR3, we arrive
at the characteristic equation �Eqs. �3.7a� and �3.7b��.

We now find the roots of Eqs. �3.7a� and �3.7b� for a
given k. It is sufficient to analyze the equation for sublattice
A only since the calculation for sublattice B is the same after
interchanging n and m. The analysis of Eq. �3.7a� simplifies
in polar coordinates,

�1 + ��m+n = ���n, �B4�

�m + n�arg�− 1 − �� − k − n arg��� = 2�l , �B5�

with l=0, 
1, 
2, . . .. The curve defined by Eq. �B4� is a
contour on the complex plane around the point �=−1 which
crosses points �
=−1 /2
 i
3 /2 �see Fig. 11�. The left-hand
side of Eq. �B5� is a monotonic function of the position on
this contour. If it increases by 2��l on the interval between
two roots of the equation, then there are �l−1 roots inside
this interval. For k=0, both �− and �+ are roots of the char-
acteristic equation. So, in this case, the number NA of roots
lying inside the unit circle can be calculated from the incre-
ment of the left-hand side of Eq. �B5� between �− and �+,

NA =
1

2�
��n + m�

2�

3
+ n

2�

3
� − 1 = n −

n − m

3
− 1.

�B6�

Similarly, on sublattice B, we have �upon interchanging n
and m�

NB = m −
m − n

3
− 1. �B7�

The same method can be applied to calculate �n. Since
there are n−1 roots on the contour defined by Eq. �B4� be-
tween �n and �

n
*, the increment of the left-hand side of Eq.

�B5� between �
n
* and �n must be equal to 2��n−1��2�n

�for �T��a�, which immediately leads to Eq. �3.14� for �n.

Re(λ)

Im(λ)

0−1

FIG. 11. Plot of the solutions of the characteristic equations
�Eqs. �B4� and �B5�� for n=5, m=11, and k=0. The dots are the
roots, the solid curve is the contour described by Eq. �B4�, and the
dashed circles are unit circles with centers at 0 and −1.
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